Choosing the Best Welding Process for the Job

What many people don’t realize is that welding can be far more complicated than it looks from the outside. What material are you using? What are the physical properties of that material? What’s the application for the finished component? These are just some of the factors that can affect how the welding project needs to get done, and what kind of welding process a manufacturer will have to use.

The properties of the material are one of the most important things to take into account before starting the jobs. As you’ll see later on, some welding processes work better with different materials. Different materials are better suited to different industries and applications, and the choice of material can affect the welding process. For example, one material that we work with, aluminum, is perfect for industries where a manufacturer may want to reduce weight.

One type of welding we do is called gas metal arc welding. It’s an ideal process to use when you’re working with materials like aluminum, carbon steel, and stainless steel. It’s also important to mention that this particular welding process is generally faster than some other processes. Another welding process is known as gas tungsten arc welding, which can be used with all of the materials that we work with, from aluminum to stainless steel and carbon steel. One notable thing about this welding technique is that it’s known for its finer technique and slower process.

Our extensive experience in this field ensures that we choose the best, most efficient technique every time. That’s why we can confidently say that we’re your one stop shop for any manual or robotic welding needs.

Posted in Manufacturing, Welding | Tagged , , , , , , | Leave a comment

Water Cutting Versus Laser Cutting

Here at Harvan Engineering, we offer both laser cutting and waterjet cutting services. You may be wondering, just what are the differences between the two? While both methods can be used for applications in a wide range of industries, like aerospace, transportation, and energy, they differ in a few key ways.

One of the main differences is that, while new advancements in laser cutting technology have increased the power of the equipment and have allowed lasers to make deeper cuts in thick materials like steel, waterjets are still the ideal way to cut through much thicker materials. Waterjet cutting is the use of a high pressure stream of water and sand, and, while may be slower than laser cutting, it is better for cutting thicker material. It can also handle some applications that laser cutting cannot. Our laser cutting machines are used for only metal materials, with the exception of aluminum, which can be more difficult to cut on a laser. We use waterjet cutting for that and non-metallic materials, like plastics, wood, and even stone.

While we prefer to use laser cutting because it’s a bit faster, you can see that the material used and the thickness of said materials are the main considerations when deciding whether or not to use waterjet cutting or laser cutting. No matter the method, we pride ourselves on the ability to deliver high-quality components on time, whether it’s just a prototype or a small to mid-sized order of parts. Keep an eye on this blog to learn more about advanced manufacturing.

Posted in Laser cutting, Manufacturing, Waterjet cutting | Tagged , , , , , , | Leave a comment

Solutions from Beginning to End

As providers of customized manufacturing solutions, we at Harvan Engineering are heavily involved in all aspects of our clients’ projects, and we are constantly working very closely with them from start to finish. In that aspect, we can be considered a one-stop-shop.

This means that sometimes we are asked to prototype parts, and sometimes we are prototyping without actually being aware of it. How so? A client might bring us a drawing and ask us to fix any problems and make it work, and we create a solution and are the first to actually make the part. In basic terms, this is prototyping, but for us, it’s just what we do to ensure our clients’ needs are fully met.

Oftentimes when we receive drawings, we see mistakes in the design—perhaps the tolerances don’t meet the overall dimension, or several design details mean something isn’t actually feasible. Perhaps with the tooling that is commonly available, something can’t be made as specified, or the material selection won’t work for how the part is made. Sometimes the standards don’t make sense; there can be different standards for the bar, sheet, and rod, and these details must be correct for drawing clarity.

Our job is to make the part manufacturable and to do so in a way that meets all of our customer’s needs and specifications. We draw upon over 25 years of experience and expertise in materials and manufacturing, so we can look at a drawing and help contribute to the design, giving solid solutions. We know that what is on paper has to be able to be manufactured, and that you can’t leave things open to interpretation. The TDP (total drawing package) needs to explain how a part is made.

Through our help in this process, we can save both time and money, ensuring no mistakes are made and that everything is easily achievable. Different departments within our company all have a role in reviewing the drawings and making sure everything makes sense, providing a complete, hands-on solution backed by true expertise.

We know that at the end of the day, time is precious and your product’s design must be flawless. Our experience and commitment ensures both your time and design’s integrity will be saved.

Posted in Manufacturing, Prototyping | Tagged , , , , | Leave a comment

Changing the Future of Garbage with Harvan and Earthbin™

Finding a safe and effective place to store garbage outdoors has puzzled humanity for centuries. As other technologies have blossomed, we are still putting our garbage outside into boxes with lids. Sure, the materials have advanced, but the product remains the same. That is until recently when a team of inventors from Canada, and neighbors of Harvan, created the EarthBin™.

The EarthBin™ is a completely sealed outdoor litterbin and waste collection point in one package. It allows for easy depositing of garbage bags, trash, litter, and recycling. However that is where its similarities with regular bins end. According to their website, the EarthBin™ has a slew of innovative features including:

  • A slam latch that keeps everything inside and prevents illegal dumping and theft.
  • An underground container that sits 6 feet below the surface, which keeps the waste cooler and smells at bay.
  • Thanks to less odor, pests are less attracted to the waste and when locked, it is impossible for them to gain access.
  • Easier access and lifting for garbage collectors thanks to auto gravity latches.
  • Weather-resistant plastic and galvanized steel construction.

At Harvan, we are proud that we have played a role in bringing this innovative product to market. EarthBin™ came to us looking for a machine shop to do the metal fabricating and final assembly.

To get a better understanding of why EarthBin™ may change the way garbage is collected in the future, you can check out this informative report from the folks at CTV News or you can always visit EarthBin’s website. To find out more about how Harvan helped EarthBin™ with our industry-leading metal fabricating, contact us today.

Posted in EarthBin | Tagged , , , | Leave a comment

Sustainability in the New Year

Having a view of our world that includes being a sustainable member of the business community has increased over the past few years. Throughout the manufacturing and engineering fields, companies are working to make contributions toward a cleaner environment and a sustainable future. Everything from new approaches to manufacturing that reduce demand for resources that are scarce to the development of alternative energy sources like solar and wind are being tested and used by companies small and large.

We’ve seen companies use new advances in technology to use energy in a smart manner via automation systems. Engineers are constantly re-engineering systems and equipment in order to eliminate wasted materials, energy consumption, and even motion.

Here are a few of the things that we at Harvan Engineering have taken on over the past few years to become a more sustainable operation:

  • Recycle all of our scraps.
  • Recycling initiatives throughout our operations.
  • Reduce amount of paper that we use.
  • We have been working to ensure that any chemicals we use in processes are as environmentally safe as is available on the market.
  • We continually work to remove processes if they are unhealthy to our employees, our neighbors and to the environment in general.
  • Our lighting has been upgraded in the shop to save energy.
  • We have instituted an Environmental Policy, as part of our Health and Safety Management System, in order to have guiding principles to work from each day.

We are committed to becoming more sustainable for our employees, our community, and especially for our customers. We believe that we can develop and build products that are as good if not better via sustainable methodologies and practices. We look forward to progressing forward down this path in the New Year. Happy 2014!

Posted in Manufacturing, Sustainable Manufacturing | Tagged , , , | Leave a comment

Automation – Advantages and Disadvantages

Automation is utilized in many processes of today’s manufacturing sector. Many factories that are creating components and parts for a variety of industries have some type of the process automated. Robots are often used in more hazardous applications or in extremely repetitive actions that can be ergonomically problematic for human workers.

What are the advantages of automation and what are some of the disadvantages? Below is a list of advantages, with more information in this article, with some caveats to why each may be also a disadvantage if viewed from a larger perspective.

1. Decreased Overhead Costs – When a manufacturing company adds some element of automation into its production or fabrication of products, the competitive advantage is increased for the company. Through automation, the company will be able to reduce costs through elimination of staff and an increase in productivity (many robots can run 24/7). However, it is important to note that many automated systems and equipment are expensive, so these additional costs will have to be compared to the overall reduction of cost in the long run.

2. Increased Productivity – As mentioned above, many automated systems can work long hours, into the night and on weekends, which provides an overall increase in productivity. This increase in productivity, although beneficial, may be slowed by other non-automated factors, such as product finishing, final packaging, and shipping. A cost comparison of skilled workers versus an automated system with all the factors from start to finish is the best analysis to determine if increased productivity can offset any human staff-related costs.

3. Consistency, Reliability, and Accuracy – Automated equipment and robotics can manufacture and continually repeat consistent final product results. The addition of automation eliminates the common issue of human error that may detract from the overall quality of production. Manufacturing processes can be carefully regulated and manipulated in order to maintain overall quality. This is a key advantage of automated equipment—the human error element is greatly reduced providing assurance that parts and components will be of consistent high quality.

4. High Volume Production – Automation is a valuable resource when a manufacturer is producing high volumes of components or parts. However, it isn’t very useful for lower volume production, as the expense for tooling and operating the machines can often outweigh the overall cost of the finished product.

5. Increase in Safety – The use of robotics and automated equipment is an effective way to prevent worker injuries. Many of today’s automated production devices keep workers a safe distance from the more hazardous areas of work. Human staff is still needed to operate and program the equipment, but the actual hands-on work is left to the machine, protecting the health and safety of staff. In addition, robots are able to work in extreme environments such as very hot or cold areas of a manufacturing plant. This allows workers to be free of additional harm from elements harmful to humans.

Today’s manufacturing incorporates the skills of trained workers with the precision of automated equipment and robotics. This combination of automation and a skilled work force provides a strong operational base for North American companies to be competitive both here and overseas. What do you think? Is automation providing advantages for manufacturing or are there long-term potential disadvantages? Let us know!




Posted in Automation, Manufacturing | Tagged , , , | Leave a comment

Harvan’s Manufacturing Process – From Design to Prototype to Final Product

As we have already alluded to our capability to take an idea and make it a reality in a quick and efficient manner in a previous blog, it should come as no surprise that we are highly skilled at every level. In order to better understand just what we do at each production step, here is a complete breakdown of our manufacturing process:

Stage 1: Prototyping

At times as a first step, we get requests from client for prototyping work. With our in-house 3D printer, we take the design and print it out for the customer – according to their drawing and specifications. Then the customer can take the printed prototype and “interference fit” it into the assembly, to make sure it performs the job that they want it to do.

Harvan will sometimes find issues with the drawings that make it unmanufacturable or difficult to manufacture (adding to the cost), so Harvan engineers will make suggestions for modifications to the drawing/part in order for it to work from a manufacturing aspect.

Suggestions to remove details that add costs without changing the part’s function can be a part of the first step of prototyping.

Stage 2: Manufacturing Quote

The engineers then prepare a quote. They go out to source the material and then find good pricing for the material and incorporate that into their quote. Of course, the time to manufacture the part is factored into the final quote on the product.

Harvan will develop a “Bill of Operations” which is a detailed listing of what steps that it takes to make a part. Harvan uses Activity-Based Costing – each activity will have a particular cost associated with it based on the expense of the equipment used and the skill of the employee using that equipment.

Stage 3: Manufacturing the Part

Once the order is received, the quoted method of manufacturing is again looked over by Harvan’s engineering staff to ensure that all the materials being used are the proper ones based on the TDP. In addition, the manufacturing process is also reviewed to again make certain it is correct before going to production. This is a second line of quality control put in place in order to make sure all the specs are adhered to before the work order goes forward into production.Fabrication

After engineering has a look, the engineers will qualify any welding to the standards recommended by either the Canadian Welding Board (CWB) or the American Welding Society (AWS).

Stage 4: Quality Control Checks

First off Inspection – we run off one piece, and the machine operator will have someone other than the operator review to make certain it is correct. Afterward they do a 10% Inspection – so that every 10th part is inspected to make certain that the tolerance remains in place or if the machines need to be readjusted to meet the drawing. Finally, before the part is shipped to the customer, there is a Final Inspection to make certain the part meets the client’s full requirements.

Whatever your application or part may be, we want you to be assured that our engineering staff will piece together the perfect parts from beginning to end. We leave no step behind!

Posted in 3D Printing, Manufacturing, Prototyping, Quality Certifications | Tagged , , , , | Leave a comment

Transporting North America’s Oil and Gas in the 21st Century

In less than a decade, North America has under gone a massive economic transformation thanks to the boom in the natural gas and oil industries. A recent report from the influential global information company IHS gives some insight into just how big the changes have been in the past six years. According to the IHS, this seismic shift in the global energy landscape gets credit for adding an average of $1,200 of discretionary income to the U.S. families, along with supporting upwards of 1.2 million jobs and contributing $284 billion to the GDP. In Canada, the oil and gas industry currently supports 550,000 jobs across the country and should create close to another 1 million jobs by 2035, according to this article.

With all of this oil close to home, what is the best way to distribute it across North America? Does it make more sense for the oil to be refined more locally and then distributed at that point? For years, North America’s relatively moribund domestic energy industry had little need for new infrastructure. However, that has all changed, and it has changed in a blink of an eye. Energy giant Exxon believes that North America will be exporting 15% of its natural gas and 5% of its oil by 2040. The two main forms of transporting oil and gas from the field to North America’s ports and transportation hubs are through pipelines and via rail or truck. Both forms of product movement have their benefits and their limitations.

Rail and Road

The first thing to point out is that there is already a vast network of rails and road throughout North America. Everyday 42% of our ton/miles of U.S. freight travels by rail, as seen in this article, while trucking freight saw a 3.9% jump in 2012 alone. As far as safety, while train accidents have declined 26% since 2000, they still occur. As we witnessed with Canada’s recent July train disaster, they can create high levels of doubt in the communities that they run through.


As of 2013, there are 409,000 miles of pipelines in the U.S. alone. This vast network of above ground and below ground pipelines carries roughly 17% of all ton/miles of U.S. freight. Pipelines do have some downsides, like higher initial expense; however, their pros generally outweigh the cons. The positives include:

  • Dedicated use and cost-effectiveness
  • Ability to transport large volumes
  • Unaffected by weather and can operate 24-7
  • Can reach more isolated oil and gas fields

Of course, as we mentioned, the cost of constructing a pipeline can be quite high, but they do provide less of a risk than rail transport.

In the end, both pipelines and rail/road transportation will continue to play critical roles in supporting the ever-growing North American oil and gas industries as long as they can maintain their feasibility, cost-effectiveness, and ultimately, a high-level of safety.

Posted in Manufacturing, Oil and Gas, Renewable Energy | Tagged , , , | Leave a comment

From Idea to Completion with Harvan

In today’s hectic business and manufacturing world, there just isn’t any time to waste. Being the best is not good enough anymore; now you also have to be the fastest and most cost-effective. At Harvan Engineering, we know a thing or two about being the best, being timely, and getting the job done for the right price. However, it is important to understand that the process that one must go through to bring a product from idea to creation to delivery can be tricky.

To start with, there is getting all the right forms filled out, quotes delivered, and materials picked out. With the expertise of our team, we know what can go wrong, like hard to reach subcontractors, and take care of all of these obstacles for our clients. It is important to know that Harvan handles massive projects from the world’s biggest military contractors, so putting together even the most complex quote is part of our daily routine.

Once we get you all settled in, the prototype stage comes next. Our Spectrum Z510 3D printer is perfect for creating quick and accurate prototypes. We know the prototype stage is a great opportunity to work closely with our customers to make sure all of their needs and demands are met. It gives you the chance to put your prototype through its paces. Many of our larger government customers have to go through tens, if not hundreds, of different tests on top of an often-exhausting approval process. Harvan is there to make sure nothing enters the manufacturing stage unless it is perfect. This attention to detail saves our client’s both time and money wasted on mid-production changes.Machining process

After everything is in place, Harvan has finishing (including in-house lapping, burnishing and grinding) and assembly capabilities for the final touches. Our production facilities can handle everything from 1 to 10,000 products a year and when combined with our highly skilled work force, you know the job will be done right, on-time, and on-budget.

No matter what industry you excel in, be it defense, agriculture, or industrial valves and controls, if you need to take a product quickly, efficiently, and cost-effectively from idea to completion, you know you can count on our team.

Posted in 3D Printing, Manufacturing, Prototyping | Tagged , , , | Leave a comment

Clean, Dependable, Versatile – Making the Case for Nuclear Energy

Nuclear energy has been around for decades as a powerful energy source, but as of late it’s often overlooked in favor of wind and solar power. In the recent past, meltdowns in Japan stoked the fears of many about the perceived dangers of nuclear power. But nuclear power is a viable—and, when implemented correctly—safe alternative to conventional energy sources.

Clean Air

A readily apparent benefit of coal plant shutdowns throughout Canada is an overall increase in air quality. One of the major advantages of nuclear power is that it does not produce harmful air emissions as a byproduct of energy generation. 


Solar and wind energy are dependent on factors outside of mankind’s control. Sites are determined by areas where sun and wind are in abundance, and even in those areas these resources are not constant. What’s more, because potential locations are so rigidly defined, solar panels and wind turbines are often built where they’re not wanted. In Canada, we have a number of these turbines on the Bruce Peninsula, a popular vacation spot where travelers have complained about both the eyesore created by the turbines, as well as the noise they produce. Nuclear plants generate power consistently throughout the day and night, regardless of outside conditions.


Power is utilized in various voltages and wavelengths. The energy generated by solar and wind power is only good for certain loads. Nuclear power however creates a more widely applicable form of energy, creating a solid energy base to be distributed throughout the power grid.


The tragic meltdown in Japan, set off by earthquake and tsunami, was evidence of what can happen when nuclear plants are not built in the right locations. But when built on seismic safe zones they are a safe energy generation solution.

The Challenge

Nuclear energy is not a perfect method of power generation. It’s true that the energy created is abundant and relatively low cost, and that nuclear meltdown is a not a regular or even an expected occurrence. But while the air emissions from nuclear power plants are clean, the spent nuclear fuel rods are not. These radioactive rods are dangerous, and must be disposed of carefully. Currently, disposal is typically handled by shielding the spent fuel and then storing it in a safe location.

The feat of creating nuclear power is an engineering marvel in its own right. The challenge of how to better dispose of spent nuclear fuel is another problem for engineers to solve. Until they do, current disposal methods keep spent fuel tucked safely away, and nuclear energy remains an excellent method for power generation.

Posted in Nuclear Power Generation | Tagged , , , | Leave a comment